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1 Introduction

The problem of concern here is the analysis of partially polarized light re-

flected by plant canopies. The significance of such signals and certain under-

lying mathematical models are presented in [3], [4], [5], for example.

We start with data measurements obtained at specified grid points with

instruments with a particular field of view (FOV). The goal is to generate

equivalent data values which would correspond to a more desirable array

of grid points, such as uniformly spaced ones, and possibly with a different

FOV. Then, polarization parameters, specifically the polarized reflectance

RQU and angle of the polarization plane X, are computed. These quantities

are related to the quantities RQ and Ru which are linearly related to raw
sensor measurements as:

RQ, ue j2x = RQ + jRu (1)

The basic approach is to model the measurement process as linear, based

on underlying "detail", obtaining an estimate of the detail and recomput-

ing "simulated" measurements on the new grid with the new FOV. Actu-

ally, these two stages are combined into one so the dense "detail" is not



actually computed. Becauseof imperfectionsin the measurementprocess,
least-squaremethods are used. The criterion for matching is a quadratic
onedirectly on the data valuesthemselves,or, alternatively, a quadratic one
basedon a nonlinear transformation of the measureddata.

The solution formula in the linear caseinvolvespseudo-inversesof matri-
ces,and henceis computedusingsingular-valuedecomposition(SVD) meth-
ods.

The primary physical processes underlying the measurement process are:

the blurring effect of a finite FOV;

the variability of the area of the ground "footprint" with view angle;

leaf size and orientation, ground cover and heliotropy; in particular,

the solar position is not constant for all data measurements, and he-

liotropism introduces a "bias" in the probabilistic model of the leaf

orientations;

the different sensors were not collocated, so measurements taken at

the same time at the same view angle result in partially overlapping

"footprints";

the data fusion effect; that is, whether the data from different sen-

sots, at different times, or at different wavelengths should be treated

separately or combined, for example averaged;

the desired polarization information, such as RQU, is computed as a two

step process: the first is a linear transformation of information from

three different sensors (yielding RQ, Ru) and the second is a nonlinear

one (RQu = IR_ + R}, X = tan-1 (Ru/RQ)/2). Whether the linearly

dependent parameters are recovered, then the nonlinearity is applied,

or if the nonlinearly dependent parameters are computed directly does
effect the ultimate outcome.

Whatever the details in the recovery method, the results must then be

compared against those predicted by theoretical models. These theoretical

models ultimately depend on models of probability density functions for vat-

ious parameters, such as leaf orientation and ground cover, and their relation

to source and view angle.

In the linear approach, these issues are addressed in the following fashion.



• the measurementprocessis a linear one which is relatively localized;
henceit canbe representedasa matrix acting on a data vector.

the FOV conceptyields a sparsematrix; if a singlematrix is applied
to the entire canopy area, the structure is not simple (for example,
not banded) becauseof the way data is organizedin the vector, corre-
spondingto irregular 2-D sampling;alternatively, for everyview angle
for which a computation is beperformed,a full, lowerdimensionalma-
trix canbe usedto model the local measurementprocessand pseudo-
inversionmethodsapplied locally; this latter approachcanbe taken as
a spatially varying by linear filtering processwhich must be inverted;

• data fusion canbe handled by either treating data sourcesseparately,
or combiningthem into a joint vector;

the linear transformation stepin computing _RQ, Ru can be absorbed in

the measurement matrix; however, this requires dealing with the three

sensors together, and hence can cause inaccuracies because the sensors
are not collocated.

In these notes, a linear least-squares method is developed, followed by one

based on a nonlinear cost function. The methods were implemented using

MATLAB for Windows on a Pentium PC and applied to data collected from

a Sunflower field in 1991 [2]. The approach here is an outgrowth of the

one developed in [1]. Several graphical results, shown in the Appendix, are
discussed.

2 Linear Least-Squares Method

2.1 General Notation

In what follows, let A/" (B) and 7_ (B) denote the nullspace and range space

of a matrix B, and B # the pseudo-inverse of B. Every matrix B is a one-

to-one onto linear map from Af ± (B) to 7_(B), and B # is the inverse map.

In particular, Bx C 7_ (B) and B#y C .N "± (B) for all x, y. The matrix B#B

is the orthogonM projection onto Af ± (B), and I - B#B is the orthogonal

projection onto Af (B). Also, BB # is the orthogonal projection onto _ (B).

Let l['ll denote the L2-norm of a vector, and the spectral norm of a matrix.
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Let B* denote the adjoint of B: the transpose for a real matrix, the Hermitian

(conjugate) transpose for a complex matrix.

2.2 The Measurement Process

We first model the measurement process. By default, all data vectors are

column vectors and linear operators are represented by matrices acting on

the left. Let c denote the measured data, obtained at specified grid points

with instruments with a particular field of view (FOV). Thus, let x represent

the "underlying detail," and the smoothing and sampling operations by the

matrix A, resulting in the measurement process:

c = Ax + n (2)

where n is the measurement noise. In general, A is rectangular and has fewer

rows than columns. Let C be the space of all measurement vectors c, and X

the space of all detail vectors x.

Our goal is to compute a data vector, d, corresponding to simulated mea-

surements onto another set (say, a uniform pattern) of grid points and pos-

sibly at another FOV. The simulated measurement process is characterized

by the matrix B. If x were known then:

d=Bx (3)

Let 7) denote the space of all simulated measurements d.

2.3 The Criterion

We first set up a quadratic criterion which yields a linear solution. Given c,

the minimum-norm least-square solution for x minimizes IIc - Axll; since A

does not have full column rank, in general, there are infinitely many mini-

mizers, so the specific solution is one which, among all minimizers, also has

minimum Ilxll. Denoting this solution by Xo, we have:

xo=A#c (4)

and more generally all minimizers of IIc- Axll are given by:

x = A#c + xn (5)
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whereX n C ff (A):

Axn=O (6)

Let Q be the orthogonal projection onto Af (A):

Q = I- A#A (7)

Now, Q# = Q* = Q. Moreover, Xn C A/" (A) iff it satisfies:

Xn= Qxn (8)

The choice of xn is arbitrary given only the information in c, and hence

its effect on computed values constitutes artifacts.

Simulated measurements d based on such x have the form:

d = Bx = BA#e + Bxn = BA#c + BQx _ (9)

where x _ is arbitrary; that is, given c, then any vector of the form:

d = BA#c + do (10)

where do E 7_ (BQ), that is do which is a linear combination of the columns

of BQ, corresponds to minimizing IIc- Axll. The choice of xn = 0, that is

x = Xo = A#c achieves minimum Ilxll but not minimum Ildll.

Smoothness (regularity) considerations suggest we may attempt to find

a solution which minimizes Ildll, not the "underlying detail," which is never

directly computed. We can take this one step further. Assume a-priori

information in the form of a "nominal" dl is available, so we want to minimize

lid- dill.
Thus, the problem is as follows: given c and dl (which is 0 if there is no

a-priori information), pick d corresponding to a vector x (via d = Bx) which

minimizes IIc - Axll and, among all such, lid - dill should be minimized.

Let us denote 7_ (BQ) as the artifact space. It consists of all vectors in

the simulated measurement space which arise from measurements performed

on "underlying detail" which is in the nuUspace of the actual measurements.

Given an actual measurement c, there is no (direct) information on this

null component, and hence the corresponding component of the simulated

measurement d can be considered an artifact.

The orthogonal projector onto the artifact space is P given by:

r

P = (BQ)(BQ) # = UU* = _ uku* k
k=l

(11)



where U = [ ul u2 ... ur J] is the Lxr matrix whose orthonormal columns,
the right sifigular vectors of BQ, span the artifact space. Note that r =

rank (BQ) is the dimension of this artifact space.

Theorem 1 Given measurements c and a-priori information dl, the simu-

lated data d which corresponds to minimum lid -dl II subject to the constraint

that d = Bx for some x minimizing IIc- Axll is given by:

d = (I - P) BA#c + Pdl (12)

That is, the artifact component is computed directly from dl, and the compo-

nent orthogonal to the artifact component is computed directly from c.

Proof. We have x = A#c + Qxo, with Xo arbitrary, the complete list of x

which minimize IIc- Axll. Then:

d = Bx = BA#c + BQxo (13)

Then:

d-dl=(BA#c-dl)+BQxo (14)

A choice of Xo which minimizes:

dl- BA#c- BQxo (15)

is:

Xo = (BQ) #(dl- BA#c) (16)

and corresponding d is:

d = BA#c + Pd_ - PBA#c (17)

The vector d in (12) corresponds to detail x which is a least-squares match

to the measurements c, while minimizing error from a-priori information dl.

But in the case of no a-priori information, we zero out the artifact component

via:

d = (I- P) BA#c (18)

This involves two pseudo-inverse and five matrix multiplication operations;

matrix addition and matrix-vector operations are of significantly lower com-

putational complexity.

Localizing this reduces complexity to solve for a particular point or region,

but must be repeated as the matrices need to be reformulated because of the

irregularity of the original measurements.
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3 Nonlinear Cost Function

The underlying cost functions in the previous sections are L2-norms, specif-

ically [[d- dl [[. As an alternative, we may try to match results computed

from d, rather than d itself. For example, suppose we try to match RQU to

some a-priori knowledge or probabilistic model. This is a nonlinear function

of a vector of low-dimension, typically three or less (here, RQu is a nonlinear

function of RQ and Ru).
Denote this as:

where:

(20)

where 1 _< N _< 3, typically. Hence, d and c are L × N and M × N matrices,

respectively, with each row (length N) consisting of one vector for which p

[ ITC _--- Cl C2 "'" aM (21)

T

can be computed. Let:

where each c_ and d_ is an N-dimensional column vector. We set up the cost
function:

L

J (d, dl) = _ [p (di)- jbi]2 (22)
i=1

where t)i is p applied to the i th row of dl. We then find d of the form:

d = BA#c + BQxo (23)

which minimizes (22). Now, we can solve this constrained minimization

problem using the method of Lagrange multipliers. However, we take an al-

ternate route here. Instead, we obtain an explicit expression for d satisfying

the constraints in terms of a minimal set of arbitrary parameters, and sub-

stitute it into the formula (22) for the cost function J. The unconstrained

minimization problem can then be solved directly.

We can rewrite the constraint as:

(I- P)(d- BA#c) : 0 (24)
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or, in other words, d - BA#c must be in the range space of BQ, that is

an artifact component. Let {s_}/_l be orthonormal vectors which span the

artifact space, so that P = _=1 uku_ = SS*, where U = / Ul u2 ... ur

is the L x r matrix whose orthonormal columns span the artifact space. Note
L

that r = rank (BQ) is the dimension of this artifact space. Hence:

r

d= do+ E"k_k (25)
k=l

where:

do = BA#c (26)

is L × N is the simulated data computed without regard for artifacts, and

each 7k is 1 × N. The r × N elements in the matrix F given by:

= [_1 _ _ ... _, IT (27)F

are free parameters to be chosen so as to minimize J:

J(r) = _ p do�+ _/_ - _/ (28)
i=1 k=l ]

where u/k is the i th component of the vector uk, do/is the i th row of the matrix

do and Pi is the nominal or a-priori value of p (d) to be matched.

For l_<j<_N, let

_j (_) = ap(_)/a_j (2o)

Then the partial derivative of J (F) with respect to the mj th element -/._y of
F is:

OJ
-- 2_ p doi + u/kTk -- Pi " #j do�+ U/kTk . u/._ (30)

(O"_mj i=1 k=l k=l /

and the solution to the minimization problem is achieved by setting this

expression to 0 for 1 _< m < N, 1 _< j < r.

We can simplify the notation at this point somewhat. We can define the

N × L matrix G via:

gj/ = (p (doi + _=lu/k_/k) -- t)/) . #j (doi W _=lU/k_/k) (31)



where1 _<j < N, 1 < i < L. Then (30) reduces to:

(OJ/OF) T = 2GU (32)

where (oJ/Or) T is the N × r matrix whose jm th element is OJ/OT,_j. Hence,

the minimization problem is:

GU = 0 (33)

This is a system of N • r equations (since GU is an N × r matrix) in N • r

unknowns, the V,_j's.

Some comments at this point is warranted. In general, L may be large,

corresponding to the number of local or data points being considered. How-

ever, N is generally small, maybe 2, and r, the rank of the artifact space, is

selectable. It can be determined either by numerical studies of P, or bounded

by an arbitrary bound on the computational procedure to be followed. It is

generally easier to minimize a single nonlinear function of several variables

rather than solving simultaneous nonlinear equations. We can do this by

converting the system (33) into a single function:

N r

J' (r)= (GU) k (34)
m=l k=l

which is a nonnegative definite form, which achieves its minimum, 0, exactly

when (33) is satisfied. We can rewrite (34) as:

J' (P) = trace (GU (GU)*) = trace (GUU*G*) (35)

and, since P = UU*, we get the final form:

J' (F) = trace (GPG*) (36)

We have j/as a nonnegative definite nonlinear quadratic form, and its min-

imization yields the desired solution.

The key step here is the choice of r, which is tantamount to a subspace

selection.

Example 2 Let the underlying parameters be RQ

+ ThenN= 2, = and:

"1(_1,¢2) ---- _1/P(_1,_2)

"2(¢1,¢2) = _2/P(¢1,¢2)

and Ru, and RQU =

(37)
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Example 3 If instead we work with the angle of polarization X -- tan-1 (Ru/RQ) /2.

Then P (_1,_2) -- tan-1 (_2/_1)/2 and:

=  1/2

4 Application to Experimental Data and Re-
sults

The linear least-squares method and the method based on the nonlinear cost

function were both applied to data collected from a sunflower field in [[2]].

The experiment involved two types of instruments: Barnes, which had a FOV

of 1°, and Cimel, which had a FOV of 1° or 12 °, depending on the day upon

which measurements were performed. Results for data collected on 07/25/91,

shown in the Appendix, are representative; on this date, the Cimel FOV was

12 ° .

The measurements were taken from a 13.5m tower in the center of a

sunflower field approximately 100m x 100m in sunlight. The polarized com-

ponent of the measured reflectance is modelled [3],[4],[5] as caused by sunlight

reflected specularly from the leaf surfaces, and hence Fresnel equations for

specular reflection apply. In particular, we are interested in measuring the

total polarized reflectance RQU and the angle of the plane of polarization, X.

The measurements were taken over multiple zenith angles for several az-

imuths, approximately ranging from 0 ° to 360 ° in increments of 45 °. The

angles of measurement were very irregular. In order to apply the methods

discussed here, the measurement process had to be modelled by certain op-

erators, specifically A and B.

An operator is developed for a fixed ray with a specified view azimuth and

a zenith angle ranging from 0 to 90°; actually, the zenith angle was restricted

to a subrange since very small and very large zenith angles caused spots on

the ground (due to the finite FOV) which either were directly below the tower

or beyond the edge of the field. Each raw measurement c, underlying x and

simulated d is obtained from light collected within a finite FOV. The locations

of the spots at which c is measured is determined by the experimental data

itself, and is generally irregular; multiple measurements from the same spot

also can occur. The locations of the underlying detail x were on a dense grid
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within the vicinity of this strip, and of d on a regular range of spots for the

fixed azimuth. The azimuth of the x spots varied to encompass the width of

the spot measurements of c and d. The underlying detail x was assumed to

arise from a FOV of 1 °.

Given a position of x, it corresponds to a spot whose center, length and

width depend on the azimuth and zenith values; this spot partially overlaps

a corresponding spot of c or d, respectively. Hence, each row of A and B,

respectively, implements a weighted sum of x values to obtain final c and d

values, respectively, with the weight proportional to the area of the x spot

which lies within the c (d) spot. Hence, the averaging effect of the FOV

for data on one grid set is converted to a possibly different FOV on another

grid set by weighting linearly according to the area overlap of the spots.

If two points have a large area overlap, the information is expected to be

more highly correlated than between two points with a smaller area overlap.

Distance between points is accounted for indirectly, in that spots which are

further apart have a smaller common area. However, the area overlap method

is reasonable considering the physical situation, a multitude of plant leaves

over a ground cover.

The results, shown in the Appendix, show that the raw measurements

of RQU and X are irregular, both for Barnes instruments with FOV 1 ° and

Cimel instruments with FOV 12 °. The linear least-squares method provides

generally good matching results, which are significantly smoothed. For the

case of the Barnes instruments, the RQU values are somewhat smaller. This

may reflect averaging over complex values RO, + jRu, then taking magni-

tude; phase cancellation due to noise causes diminished RQU. The nonlinear

method yields -RQU results similar to the linear method. The key to the non-

linear method is the a-priori information _; further studies should use the

mathematical models developed in, for example, [3],[4],[5], and perhaps quan-

tities other that p = RQU for better results. The nonlinear method is still

promising precisely because it more easily accommodates such an approach.

The values of X obtained for both Barnes and Cimel were very good,

surprisingly good considering the high sensitivity of phase information in

many situations. The nonlinear approach produced very small X values,

suggesting recovered Ru values are too small relative to RQ. This may also be

caused by the matching to -RQU in the nonlinear method; perhaps combining

matching to RQU and X would yield better results.

In summary, the methods developed here are very promising. Further

investigations and development of specific implementation in MATLAB, and
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particularly a more extensive utilization of established mathematical models

of the underlying physical process, for example through the nonlinear cost

function approach, is indicated.
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5 Appendix: Graphs of Results

Key to linetypes:

• dots: raw measurements.

• solid line: linear least-square solution; the a-priori information dl is

taken to be 0.

• dashed line: solution based on the nonlinear cost function RQU; the

a-priori information _ is taken to be the mean RQU corresponding to

the linear least-square solution do for the specified view azimuth.

12



All graphs are for measurementstaken on 07/25//91.
Barnes instruments had raw FOV of 1° and Cimel instruments had raw

FOV of 12°, with measurementstakenoverirregular azimuth and zenith view
angles.The processeddata, by either method,usedan effective('simulated')
FOV of 12° at regularly spacedzenith anglesfor fixed azimuth anglestaken
from 0° to 315° in incrementsof 45°. Not all results areshown.
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